Isometric immersions of locally conformally Kähler manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally conformally Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

Topology of locally conformally Kähler manifolds with potential

Locally conformally Kähler (LCK) manifolds with potential are those which admit a Kähler covering with a proper, automorphic, global potential. Existence of a potential can be characterized cohomologically as vanishing of a certain cohomology class, called the Bott-Chern class. Compact LCK manifolds with potential are stable at small deformations and admit holomorphic embeddings into Hopf manif...

متن کامل

Isometric Immersions into 3-dimensional Homogeneous Manifolds

We give a necessary and sufficient condition for a 2-dimensional Riemannian manifold to be locally isometrically immersed into a 3-dimensional homogeneous manifold with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the second fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds includes in particular the Berger spheres,...

متن کامل

Locally conformal Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

Geometric Inequalities on Locally Conformally Flat Manifolds

In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2019

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-019-09655-y